[๋…ผ๋ฌธ ๋ฆฌ๋ทฐ] Bag of Tricks for Image Classification with Convolutional Neural Networks / ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ๋ถ„์„ ๋…ผ๋ฌธ
ยท
๐Ÿ› Research/Image Classification
CVPR 2019 ์— ๊ณต๊ฐœ๋œ ๋…ผ๋ฌธ์œผ๋กœ, image classification ๋“ฑ์˜ vision ๋ถ„์•ผ์—์„œ ์ฐธ๊ณ ํ•˜๋ฉด ์ข‹์„ ์—ฌ๋Ÿฌ training ๋ฐฉ๋ฒ•๋ก ์„ ์ •๋ฆฌ ๋ฐ ์‹คํ—˜ํ•œ ๋…ผ๋ฌธ์ž…๋‹ˆ๋‹ค. Introduction Image classification task์—์„œ ์„ฑ๋Šฅ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋” ์ข‹์€ ๋” ํฐ network ๋ฅผ ์“ฐ๋ฉด ๋˜์ง€๋งŒ, network๋ฅผ ๋ณ€๊ฒฝํ•˜๋Š” ๊ฒƒ ์ด์™ธ์—๋„ ์„ฑ๋Šฅ์„ ์ขŒ์ง€์šฐ์ง€ํ•˜๋Š” ๋งŽ์€ ์š”์†Œ๋“ค์ด ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ResNet50์„ ๊ธฐ์ค€์œผ๋กœ network architecture๋Š” ํฌ๊ฒŒ ๋ณ€๊ฒฝํ•˜์ง€ ์•Š๊ณ  ์—ฌ๋Ÿฌ Trick ๋“ค์„ ์‹คํ—˜ํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, ์—ฌ๋Ÿฌ trick๋“ค์„ ์ ์šฉํ•˜๋ฉด ์ ์šฉ ์ด์ „๋ณด๋‹ค ImageNet Top-1 accuracy๊ฐ€ 4% ๊ฐ€๋Ÿ‰์ด๋‚˜ ์ฆ๊ฐ€ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค(์œ„์˜ Table ..
[๊ฐ„๋‹จ ์„ค๋ช…] ๊ธฐ๋ณธ์ ์ธ CNN ์•„ํ‚คํ…์ฒ˜ ์„ค๋ช… | VGGNet, ResNet, Densenet
ยท
๐Ÿ› Research/Image Classification
VGGNet - Very Deep Convolutional Networks for Large-Scale Image Recognition / arXiv 2014 ResNet - Deep Residual Learning for Image Recognition / CVPR 2016 Densenet - Densely Connected Convolutional Networks / CVPR 2017 VGGNet VGGNet์€ AlexNet๋ณด๋‹ค network์˜ layer๊ฐ€ 2๋ฐฐ์ด์ƒ ๊นŠ์–ด์ง€๋ฉฐ ๋”์šฑ ๋ณต์žกํ•œ task๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. Network layer ๊ฐ€ ๊นŠ์–ด์ง€๊ณ  ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋  ์ˆ˜ ์žˆ์—ˆ๋˜ ์ด์œ ๋Š” VGGNet๋ถ€ํ„ฐ convolutional filter๋ฅผ 3x3 size๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋„คํŠธ์›Œํฌ๋ฅผ ๊นŠ๊ฒŒ ์Œ“๊ธฐ ์‹œ์ž‘ํ–ˆ๊ธฐ ๋•Œ..