๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ
728x90

๐Ÿ› Research/Detection & Segmentation17

[๊ฐ„๋‹จ ์„ค๋ช…] Semi-Supervised Semantic Segmentation / Segmentation์—์„œ unlabeled ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ•™์Šตํ•˜๋Š” ๋ฐฉ๋ฒ• Semi-supervised semantice segmentation ์ด๋ผ๋Š” ๋ถ„์•ผ๋ฅผ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•ด ์•„๋ž˜ ๋…ผ๋ฌธ๋“ค์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค. Semi-supervised semantic segmentation needs strong, varied perturbations (BMVC 2020) Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CVPR 2020) Guided Collaborative Training for Pixel-wise Semi-Supervised Learning (ECCV 2020) PSEUDOSEG: DESIGNING PSEUDO LABELS FOR SEMANTIC SEGMENTATION (ICLR 2021) Semi-s.. 2022. 1. 13.
[๋…ผ๋ฌธ ๋ฆฌ๋ทฐ] Feature Pyramid Networks for Object Detection / FPN / ๊ฐ์ฒด์˜ ์Šค์ผ€์ผ์— invariantํ•œ ๋„คํŠธ์›Œํฌ Object detection ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ segmentation ๋ถ„์•ผ์—์„œ๋„ ์ž์ฃผ ์“ฐ์ด๋Š” FPN(Feature Pyramid Network) ๊ตฌ์กฐ๋ฅผ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. FPN(Feature Pyramid Network) Object detection๊ณผ segmentation ๋ถ„์•ผ์—์„œ๋Š” object๋ฅผ scale invariant ํ•˜๊ฒŒ ์ž˜ ๊ตฌ๋ณ„ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ์ด์ „ ์—ฐ๊ตฌ์—์„œ๋Š” input ์ด๋ฏธ์ง€์˜ ํฌ๊ธฐ๋ฅผ ๋ฐ”๊ฟ”๊ฐ€๋ฉฐ object๋ฅผ ์ฐพ์•˜์ง€๋งŒ ์ด๋Š” ๋ฉ”๋ชจ๋ฆฌ์™€ ๊ณ„์‚ฐ๋Ÿ‰ ์ธก๋ฉด์—์„œ ๋‚ญ๋น„์ ์ž…๋‹ˆ๋‹ค. ๊ทธ์— ๋น„ํ•ด FPN์€ ํšจ์œจ์ ์œผ๋กœ object scale์— invariantํ•œ feature๋“ค์„ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ๋Š” ๋„คํŠธ์›Œํฌ์ž…๋‹ˆ๋‹ค. ๋…ผ๋ฌธ์—์„œ ๋งํ•˜๋Š” 'pyramid' ๋ผ๋Š” ๋‹จ์–ด๋Š” ์„œ๋กœ ๋‹ค๋ฅธ resolution์˜ feature๋ฅผ ์Œ“์•„์˜ฌ๋ฆฐ ํ˜•ํƒœ๋ฅผ.. 2022. 1. 13.
[๋…ผ๋ฌธ ๋ฆฌ๋ทฐ] Efficient RGB-D Semantic Segmentation for Indoor Scene Analysis / RGB-D ์˜์ƒ์—์„œ์˜ segementation ๋ณธ ๋…ผ๋ฌธ์€ 2021๋…„ International Conference on Robotics and Automation (ICRA) ๋ผ๋Š” ํ•™ํšŒ์— ๊ฒŒ์žฌ๋˜์—ˆ๊ณ , RGB+depth image ๋กœ semantic segmentation task๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์†Œ๊ฐœํ•˜๊ธฐ ์œ„ํ•ด ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค. Depth ์ด๋ฏธ์ง€๋Š” ๊ด€์ธก์ž(์นด๋ฉ”๋ผ) ์™€์˜ ๊ฑฐ๋ฆฌ๋ฅผ ํ‘œํ˜„ํ•˜๋ฏ€๋กœ RGB ์ด๋ฏธ์ง€์—์„œ๋Š” ๊ฐ์ฒด๊ฐ€ ๋ถ„๋ฆฌ๋˜๋Š” ์ง€์ ์ฒ˜๋Ÿผ ๋ณด์ผ์ง€๋ผ๋„(์กฐ๋ช…, ๊ทธ๋ฆผ์ž์— ๋”ฐ๋ผ) depth ์ด๋ฏธ์ง€์—์„œ๋Š” ๋™์ผํ•œ(continuousํ•œ) ๊ฐ์ฒด๋กœ ๋ณด์ผ ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— RGB ์ด๋ฏธ์ง€์™€ depth ์ด๋ฏธ์ง€๋ฅผ ํ•จ๊ป˜ ์‚ฌ์šฉํ•˜๋ฉด segmentation ์„ฑ๋Šฅ์ด ์˜ฌ๋ผ๊ฐˆ ๊ฒƒ์ด๋ผ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. (๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” depth ์ด๋ฏธ์ง€๊ฐ€ rgb ์ด๋ฏธ์ง€์— complementary geometric in.. 2022. 1. 12.
[๋…ผ๋ฌธ ๋ฆฌ๋ทฐ] Pyramid Scene Parsing Network / PSPNet / Pyramid Pooling ๋ณธ ๋…ผ๋ฌธ์€ CVPR2017์— ๊ฒŒ์žฌ๋˜์—ˆ์œผ๋ฉฐ PSPNet(ImageNet scene parsing challenge 2016์—์„œ 1๋“ฑ)์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ํ˜„์žฌ๋Š” ๋” ์„ฑ๋Šฅ์ด ์ข‹์€ ์—ฐ๊ตฌ๊ฐ€ ๋งŽ์ด ์†Œ๊ฐœ๋˜์—ˆ์ง€๋งŒ semantic segmentation์— global contextual information์„ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•œ Pyramid Pooling Module ์„ ์ •๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ๋ฆฌ๋ทฐ๋ฅผ ์ž‘์„ฑํ•ฉ๋‹ˆ๋‹ค. Motivation ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธฐ์กด์˜ segmentation ์•Œ๊ณ ๋ฆฌ์ฆ˜์— 3๊ฐ€์ง€ ๋ฌธ์ œ์ ์ด ์žˆ๋‹ค๊ณ  ์ง€์ ํ•ฉ๋‹ˆ๋‹ค. (์œ„ ๊ทธ๋ฆผ์—์„œ๋Š” FCN ๊ณผ ๋น„๊ต) 1) Mismatched Relationship : ์ฃผ๋ณ€ ํ™˜๊ฒฝ(contextual information)๊ณผ ๋งž์ง€ ์•Š๋Š” ํ”ฝ์…€ ๋ถ„๋ฅ˜. ์˜ˆ๋ฅผ ๋“ค์–ด ํ˜ธ์ˆ˜ ๊ทผ์ฒ˜์˜ ์ž๋™์ฐจ, ๋„๋กœ ์œ„์˜ ๋ณดํŠธ ๊ฐ™์€.. 2021. 12. 5.
[๋…ผ๋ฌธ ๋ฆฌ๋ทฐ] Unified Perceptual Parsing for Scene Understanding / UperNet / Multi-task learning ๋ณธ ๋…ผ๋ฌธ์€ ECCV 2018์— ๊ฒŒ์žฌ๋œ ๋…ผ๋ฌธ์œผ๋กœ ๋‹ค์–‘ํ•œ visual concepts ์ธ์‹ํ•˜๋Š”(multi-task learning) Unified Perceptual Parsing ์ด๋ผ๋Š” ์ƒˆ๋กœ์šด task ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. Introduction ์œ„ ๊ทธ๋ฆผ์€ ๊ฑฐ์‹ค(scene)์— ํ…Œ์ด๋ธ”, ๊ทธ๋ฆผ, ๋ฒฝ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๊ฐ์ฒด(object)๋กœ ์ด๋ฃจ์–ด์ ธ์žˆ๊ณ  ๋™์‹œ์— ํ…Œ์ด๋ธ”์€ ํ…Œ์ด๋ธ” ๋‹ค๋ฆฌ, ์ƒํŒ, apron(part) ๋“ฑ์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ ํ…Œ์ด๋ธ”์€ ๋‚˜๋ฌด(material)๋กœ ๋งŒ๋“ค์–ด์กŒ๊ณ  ์†ŒํŒŒ ํ‘œ๋ฉด์€ kinitted(texture) ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์นดํ…Œ๊ณ ๋ฆฌ๋“ค์€ scene understanding, object/material/part/texture recognition task์—์„œ ๊ฐ๊ฐ ๋…๋ฆฝ์ ์œผ๋กœ ์ˆ˜ํ–‰๋˜์–ด ์™”์Šต๋‹ˆ๋‹ค... 2021. 12. 4.
728x90